Narayanan C Krishnan

 

Machine Learning (CptS 570) Fall 2012

 

Section 01, MWF 9.10-10.00am, Sloan 32

School of Electrical Engineering and Computer Science

Washington State University

 

Description: A detailed investigation of current machine learning theory and methodologies. Introduces the background and basics of machine learning, including representation, inductive bias and performance evaluation. Analyzes and compares machine learning methdologies. Hands on expeirence on some of the basic machine learning aglorithms will be gained through implementing them in R.

 

Prerequisites: Data Structures (CptS 122), Artificial Intelligence.

 

Textbook: Ethem Alpaydin, Introduction to Machine Learning, Second Edition, MIT Press, 2010.

 

Grading: Top Five out of Six Homeworks (60%), Project (20%), Presentation (10%), Critiques and Class Participation (10%)

 

Course Details: PDF

 

Instructor: Narayanan C Krishnan (CK)

Office Hours: MWF 10-11am or by appointment.

Office: EME 123

Phone: 509 335 4287

Email: ckn@eecs.wsu.edu

 

Grades: PDF

 

Course Schedule, Lectures and Homeworks

 

Week
Date
Topic Readings Due
20-Aug
Introduction Chapter 1  
22-Aug
Introduction Chapter 1 PDF HW1
1
24-Aug
Supervised Learning Chapter 2 PDF  
27-Aug
Supervised Learning Chapter 2  
29-Aug
Supervised Learning/Bayesian Learning Chapter 2 and 3 PDF  
2
31-Aug
Bayesian Learning/Parameteric Methods Chapter 3 and 4  
3-Sep
Labor Day Holiday    
5-Sep
Parametric Methods Chapter 4 PDF  
3
7-Sep
Non-Parameteric Methods Chapter 8 PDF HW1
10-Sep
Non-Parameteric Methods Chapter 8 HW2 DATA
12-Sep
Decision Trees Chapter 9 PDF  
4
14-Sep
Decision Trees Chapter 9  
17-Sep
Decision Trees Chapter 9  
19-Sep
Linear Discrimination Chapter 10 PDF  
5
21-Sep
Linear Discrimination Chapter 10 HW3
24-Sep
Linear Discrimination Chapter 10 HW2
26-Sep
Neural Networks Chapter 11 PDF  
6
28-Sep
Neural Networks Chapter 11  
1-Oct
Neural Networks Chapter 11  
3-Oct
Neural Networks Chapter 11  
7
5-Oct
Kernel Machines Chapter 13 PDF HW4 DATA TESTDATA
8-Oct
Kernel Machines Chapter 13 HW3
10-Oct
Kernel Machines Chapter 13  
8
12-Oct
Kernel Machines Chapter 13  
15-Oct
Ensembles Chapter 17 PDF  
17-Oct
Ensembles Chapter 17 Project Team Registration
9
19-Oct
Evaluation Chapter 19 PDF  
22-Oct
Evaluation Chapter 19  
24-Oct
Evaluation Chapter 19 HW5 DATA
10
26-Oct
Evaluation Chapter 19  
29-Oct
Dimensionailty Reduction Chapter 6 PDF  
31-Oct
Dimensionailty Reduction Chapter 6  
11
2-Nov
No Class   HW4
5-Nov
Project Discussion/Dimensionality Reduction Chapter 6 Project Description Data
7-Nov
Dimensionality Reduction Chapter 6 PDF  
12
9-Nov
Clustering Chapter 7 PDF Questions for HW6
12-Nov
Veterans Day Holiday    
14-Nov
Clustering Chapter 7  
13
16-Nov
Clustering Chapter 7 HW5/Selection of Papers for Presentation
19-Nov
Thanks Giving Holiday   HW6 Problems
21-Nov
Thanks Giving Holiday    
14
23-Nov
Thanks Giving Holiday    
26-Nov
Project Update Summary   Project Update
28-Nov
No Class    
15
30-Nov
Student Presentation 1 Jason Fairey /Jennifer Williams HW6/Critiques
3-Dec
Student Presentation 2 Yibo Yao / Artur Cook Critiques
5-Dec
Student Presentation 3 Shervin Hajiamani / Xiyu Xie Critiques
16
7-Dec
Student Presentation 4 Dmitry Dementyev / Howard Lu Critiques
10-Dec
Student Presentation 5 Brett Johnson / Thomas Corll Critiques
10-Dec
Student Presentation 6 Chris Cain / Ngan Dong Critiques
17
12-14-Dec
No Class   Project Report

 

Resources

Machine Learning

Help on R